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Abstract 

 

 

 

 

 

In 3D reconstruction; depth and normal maps estimates based on multi view stereo Patch Match has 

shown a great results in terms of accuracy; however; in textureless surfaces; photo consistency based cor-

respondence fails to match and provide pixel-wise depth estimate for large portion in the scenes. 

 

In this master thesis, we assume that textureless areas are smooth and piecewise planar, we combine 

between low-level segmentation and Plane masks generated using Convolutional Neural Network (CNN) 

to construct local planes. The plane estimates are used to fill the missing depth and normal surfaces.  

 

Finally; we evaluate our algorithm in terms of accuracy and completeness on the ETH 3D high 

resolution dataset. 
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Chapter 1 
 

I. Introduction  

 

 

Multi-View Stereo (MVS) Reconstruction aims to recover a dense 3D representation of the scene 

from a set of views; in last decade, several successful MVS algorithms have been proposed with variety of 

datasets. 

 

Among these algorithms; Patch Match based algorithms [1] are still the best and outperforming 

learning methods; for instance, Colmap [2] produces an accurate depth maps estimates and better than the 

recently developed DeepMVS [3] Multi view stereo network. The resulting depth and normal maps are then 

fused geometrically into scene point clouds. However, Patch Match based methods fails to estimates depth 

in textureless surfaces for their smoothness and similarity appearance. 

 

The problem of completion in textureless surfaces has been recently addressed in TAPA-MVS [4] 

and PCF-MVS [5] assuming that textureless surfaces are often smooth piecewise planar. Both method uses 

low level segmentation superpixels to generate plane hypothesis based on their photo consistency metric. 

In this thesis, we propose a new plane segmentation method based on instance plane segmentation CNN 

model; combined with low-level superpixel similarity appearance segmentation as in [4] [5]. As in PCF-

MVS, a fitted plane parameters for each plane-superpixel are used to estimate depth for missing pixels in 

Colmap depth maps. 

 

To validate our method; we perform an evaluation on the recently published training dataset ETH 

3D for its scene variety, high resolution view with a precise ground truth measures. 

 

This master thesis text is structured as follows: 

 

- Chapter 2: Principles and fundamentals of Structure of Motion (SFM) and Multi View Geome-

try. 

- Chapter 3: 3D Reconstruction (sparse, dense). 

- Chapter 4: Depth Completion process and Plane fitting. 

- Chapter 5: Evaluation on ETH 3D benchmark. 

- Chapter 6, Conclusion and future work are given. 
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Chapter 2 
 

 

II. Principles 

 

In this chapter, we introduce the main principles of multi view stereo (MVS) and the general struc-

ture of our 3D Reconstruction pipelines. 

 

1. Image Description 
 

In multi view stereo system, the main interest is to extract locally the geometrical association be-

tween a multiple of views to reconstruct the 3D model of the scene. 

Typically, each view is described by its local features with high colour gradient as an edges, cor-

ners, …; and Ideally, these points features should be sparsely detected and robust against the photometric 

(illumination, noise) and geometric (rotation, scale) variations. The Scale Invariant Feature Transform 

(SIFT) [6]; most popular and widely used descriptor; encodes the spatial information of an image using 

local interest points and neighbouring pixels as gradient (orientation and magnitude). Features matching 

finds the pixel level correspondence between the features in the source image and others images that points 

to the same object in terms of correlation. 

 

2. Multi View Geometry 
 

Before moving to Multi View Geometry and discussing  the general problem of pose calculation 

using the detected point features, it is necessary to present the camera model and perspective projection 

that describes the image formation through a linear mapping from 3D homogenous world frame 𝑋 ∈ ℜ3 to 

2D representation 𝑥 ∈ ℜ2 in image frame. Thus; this projection is formulated as: 

 

𝑥 = 𝐾 [𝑅 𝑇] 𝑋 

𝑥 =  (
𝑥
𝑦
1
)~ [

𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3

](

𝑋
𝑌
𝑍
1

) 
(2.1) 

 

In 2.1, 𝐾 represents the intrinsic parameters that describes the properties of the camera; while 𝑅 ∈
𝑆𝑂(3) and 𝑇 ∈ ℜ3 defines the Euclidean transformation “The 3 × 3 Rotational and Translation vector” 

from the world to the camera coordinates system; known as extrinsic parameters. 

 

2.1. Camera Calibration  

Camera calibration is the process to determine the intrinsic and extrinsic parameters of the camera 

model for an uncalibrated camera; one of the most used camera calibration techniques is the one proposed 

by Tsai [6]; that requires more than six 3D points 𝑛𝑝 > 6 to identify the 12 unknown parameters of camera 

model. 
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Figure 2.1: Camera Calibration from 2D-3D correspondence.  

 

Given a 2D observations 𝑥 and its corresponding 3D point 𝑋, the camera parameters are estimated 

as: 

 𝑥 = (
𝑢
𝑣
1
)~ 𝑀 𝑋 = [

𝑚1
𝑇

𝑚2
𝑇

𝑚3
𝑇

] . (

𝑋
𝑌
𝑍
1

)      =>       {
(𝑚1

𝑇 − 𝑢𝑖 𝑚3
𝑇). 𝑋𝑖 = 0

(𝑚2
𝑇 − 𝑣𝑖 𝑚3

𝑇). 𝑋𝑖 = 0
 (2.2) 

 

The problem can be then re-arranged to obtain a system of equation with 𝑛 observations (figure 

2.1): 

 

[
 
 
 
  𝑋1

𝑇 0𝑇 − 𝑢1𝑋1
𝑇

 0𝑇 𝑋1
𝑇 − 𝑣1𝑋1

𝑇

…   …   …   

 𝑋𝑛
𝑇 0𝑇 − 𝑢𝑛𝑋𝑛

𝑇

 0𝑇 𝑋𝑛
𝑇 − 𝑣𝑛𝑋𝑛

𝑇 ]
 
 
 
 

. (

𝑚1

𝑚2

𝑚3

) =

(

 
 

0
0
⋮
0
0)

 
 

       =>        𝑄.𝑀 = 0 (2.3) 

  

A solution is to minimize ‖𝑄.𝑀‖2 subjected to the constraint ‖𝑀‖2. It can be solved through Sin-

gular Value Decomposition (SVD) where the solution is the eigenvector corresponding to the smallest ei-

genvalue of the matrix 𝑄  𝑇 𝑄 ; since it is the unit vector 𝑥  that minimizes‖𝑄.𝑀‖2 = 𝑥𝑇𝑄𝑇𝑄 𝑥. 

The reverse process, Triangulation, is to determine 3D point 𝑋 by intersecting multiple visual rays 

from the corresponding 2D projections 𝑥𝑖. With known camera model of at least two observations; 3D pose 

is estimated using Direct Linear Transformation (DLT) as in camera calibration. 

 
Figure 2.2: Two View triangulation for homography.  
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2.2. Two View Geometry 

 

In uncalibrated multiple view geometry; a reconstruction of both cameras and scene structure can 

be computed from point feature correspondence. 

a. Homography 

Homography is projective transformation that relates pixel coordinates between two images 

𝑥2 = ℎ( 𝑥1 ) if both images are viewing the same plane (parallax); we say, the homography induced 

by two image planes (figure 2.2); therefore, 𝑍 = 0 and the system of equation in camera calibration 

2.3 can be rewritten as follows: 

  

 𝑥 = (
𝑢
𝑣
1
)~ 𝐻 𝑋 = [

ℎ1
𝑇

ℎ2
𝑇

ℎ3
𝑇

] . (
𝑋
𝑌
1
)      =>       𝐻.𝑀 = 0 (2.4) 

 

The model matrix 𝐻 has 8 degrees of freedoms; we use DLT to estimate the homography 

and we require at least 4 non-collinear points. 

 

b. Epipolar 

For general scenes; we introduce the epipolar concept in modelling two view geometry. We 

define the epipolar geometry between two views as the intersection of the image planes with pencil 

of planes joining the centres of the cameras with a baseline line. The epipole is the point of inter-

section of the line joining the camera centres with epipolar plane as shown in figure 2.3.  

 

 
Figure 2.3: Two View geometry and epipolar with necessary condition for correspondence. 

 

We have 𝑥′ = 𝐻 𝑥  and  𝑙′ = [𝑒′]× 𝑥′, implies  that 𝑙′ = [𝑒′]× (𝐻 𝑥) = 𝐹 𝑥; where 𝐹 is de-

fined to be the fundamental matrix. If 𝑥 and 𝑥′ corresponds, then 𝑥′ lies in the epipolar line  𝑙′ =
𝐹 𝑥. In other words, 𝑥′𝑇  𝑙′ = 0 implies that 𝑥′𝑇  𝐹 𝑥 = 0  as necessary condition for correspondence. 

In case of calibrated cameras, we define 𝑥′′ = 𝐾−1 𝑥  as inverse point to 𝑥 in normalized coordi-

nates; and by rewriting the condition for correspondence formula (𝐾′𝑥′)𝑇  𝐹 (𝐾 𝑥) = 0   =>
    𝑥′𝑇  𝐸 𝑥 = 0  with 𝐸 = 𝐾′𝑇  𝐹 𝐾.  The fundamental matrix can be estimated from 8 points corre-

spondences up to a scale factor enforcing the rank to 2; for more details, refer to [7] page 279. 
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2.3. N-View Geometry 

 

In large number of views, linear estimation methods are not sufficient and robust to produce an 

accurate estimation due to redundancy and outliers (noise, occlusions, …); therefore, we wish to estimate 

the projection matrix 𝑃 and 3D points 𝑋 assuming that the measurements follows Gaussian distribution 

�̂� = �̂� �̂� in minimizing cost function 2.5 between the projected points and measured image points in every 

view; known as Bundle Adjustment (BA): 

 

 min
�̂�𝑖, �̂�𝑗

∑𝑑(�̂�𝑖  �̂�𝑗 , �̂�𝑗
𝑖)

2

𝑖 𝑗 

 (2.5) 

 

Where 𝑑(𝑥′, 𝑥) is the distance between point 𝑥 and reprojection 𝑥′. BA refinement is used as final 

step in reconstruction and it requires a good initialization of 𝑋 and 𝑃 which can be done using DLT as 

described previously. 

 

RANSAC (Random Sample Consensus) is another robust model fitting algorithm in presence of 

outliers; that can be applied to estimate the camera calibration, Structure of motion, Homography, Primi-

tives …; so that the estimate is unaffected by outliers.  

RANSAC algorithm is described as follows: 

 Randomly select 𝑛 sample of set 𝐴 that have 𝑁points. 

 Fit the model using the 𝑛 points.  

 Determine the set of points 𝑆 which are within distance threshold 𝑑𝑡 to the fitted model 

(number of inliers). 

 Compute the distances of all other points in 𝑆 from this model. 

 We choose the model that has maximum of inliers after 𝑘 iterations.  

According to the previous description, RANSAC aims to maximize the number of inliers points 

with 𝜎 = 0.95 confidence level; mathematically, we define this optimization problem with the following 

robust cost function (Huber): 

 

 𝐷 = ∑𝛾(𝑑𝑖)

𝑖

     𝑤𝑖𝑡ℎ       𝛾(𝑑𝑖) =  {
𝑑𝑖

2 𝑑𝑖
2 <  𝑑𝑡

2 𝐼𝑛𝑙𝑖𝑒𝑟𝑠   

𝑑𝑡
2 𝑑𝑖

2 ≥ 𝑑𝑡
2 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠

    (2.6) 

 

A typical stopping criterion 𝑘 for RANSAC with 𝑝 confidence level, 휀  inlier ratio and 𝑠 samples is 

set to: 

 

 𝑘 =  
log (1 − 𝑝)

log (1 − (1 − 휀)𝑠)
 (2.7) 
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Chapter 3 
 

III. 3D Reconstruction  

 

 
Figure 3.1: Colmap 3D reconstruction pipeline. 

 

1. Correspondence Search 
 

The first stage in 3D reconstruction, is the correspondence search that processes set of input images 

aiming to generate a 3D point clouds and construct a visibility graph, it consists of the following steps:  

- Local features extraction from the source images and match them with different images using 

SIFT, a hierarchical indexing approach is used to search for correspondences in most similar 

views. 

- The matched features are geometrically verified if they point to the same scene point or not by 

estimating the transformation between two views using RANSAC. The geometrically verified 

features are registered in database with their images indexes constructing a graph. 

 

2. Sparse Reconstruction 
 

In the second stage, we use the visibility graph and the triangulated correspondences in database to 

estimate the camera parameters in incremental reconstruction approach that repeatedly add a new image to 

the existing reconstruction followed by triangulation and refinement BA. The two pair views has to be 

carefully selected for a good initialization in estimating the intrinsic and extrinsic parameters of camera; 

likewise, to register a new view it has to be well chosen to produce an accurate pose estimation in the 

presence of outliers. 

In the other hand; to register a new image; it has to share part of the reconstructed scene points and 

shares seen points that are not constructed yet with at least one registered view; therefore, the new set of 

3D point points will be extended and decisive in selecting next best view. 

To mitigate the accumulated drift in in incremental reconstruction; Full BA is necessary to refine 

the camera parameters and 3D point poses jointly as introduced in [43].  Some outliers may survive in the 

robust estimation leading to non-valid triangulation; in multi view, redundancy is key to strictly remove the 

triangulation mismatches. 
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3. Dense Reconstruction 
 

In dense reconstruction; we aim to densify the captured wold representation using a dense corre-

spondence starting from depth/normal maps estimation, fusion in scene point clouds then surface meshing 

step. 

Once the camera parameters are estimated; Depth and normal maps can be recovered by construct-

ing epipolar geometries between the corresponding images to aggregate the appearance similarity between 

the views. Therefore; the depth is estimated through stereo comparison among patches from different views 

referred as photometric measures as Normalized Cross Correlation (NCC); where the normal is deduced 

directly from the recovered depth map as gradient information. 

The depth and normal estimates will be then fused to the scene as a dense point clouds. To improve 

the quality and accuracy of fusion; we perform depth/ normal consistency check (figure 3.1) between the 

view to filter out the outliers and invalid information. 

0636 

   
0639 

   

0640 

   
0643 

   



12 

 

0646 

   

Input Image Depth Map Normal Map 

Figure 3.1(a): 3D Dense Reconstruction for pipes scene in ETH 3D dataset 

(left) RGB image (middle) depth map (right) normal map  

 

9257 

   
9266 

   

9261 

   
Input Image Depth Map Normal Map 

Figure 3.1(b): 3D Dense Reconstruction for Electro scene in ETH 3D dataset 

(left) RGB image (middle) depth map (right) normal map 
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Chapter 4 
 

IV. Depth Completion 

 

 

1. Motivation 
 

The quality of fused scene depends on the accuracy and completeness of depth and normal maps 

which is critical for robotic and virtual reality applications. For indoor scenes; depth information is missing 

in large bright and texture less surfaces which can be critical in autonomous navigation where these surfaces 

represents an obstacles. 

So far; our current 3D dense reconstruction pipeline produces an accurate and reliable depth maps, 

however these information is sparse and missing in large portion in the scenes. Thus through this thesis; we 

address the problem of the completeness from initial sparse accurate input depth maps.  

In upcoming section; we present the related works that addresses the depth completion from sparse 

depth maps, then we present our depth completion algorithm based on plane detection network and fitting. 

Last; we evaluate our approach on ETH3D bench mark in terms of accuracy and completeness. 

 

Many methods have been proposed for predicting depth in missing pixels, as depth inpainting with 

smoothness prior [8], fast marching methods [9], patch based image synthesis [10] and back ground surface 

extrapolation [11]. In high resolution images, several methods have been proposed to improve the spatial 

resolution of depth map which is more challenging than low resolution images including Markov random 

Filed [12], Segmentation [13]. 

 

One strategy to enhance depth maps is to leverage scene shape; for indoor scenes for examples; 

planes and quadratic surfaces fitting has been proposed to improve depth maps completeness and filling 

local holes as in [14] [15].  

 

In this work, to detect surface regions; we use plane detector network to extract large textureless sur-

faces as side walls, floor…; additionally, superpixel segmentation is used to cluster the input RGB image 

into regions. We aim to estimate plane parameters locally in each cluster and perform merging mechanism 

based on potential relationship between clusters and improve the segmentation mask. The plane parameters 

will be used to complete the sparse input depth and normal from our 3D reconstruction pipeline.  

 

2. 3D Plane Detection 
 

Human are remarkably effective in using salient global structure such as planes, symmetric and 

smooth surfaces; taking this global information can an advantage in to produce an  accurate and complete 

reconstruction. However; traditional techniques [16] are computationally challenging and rely on low level 

features by global optimization procedure makes those methods less robust. Recently, deep learning based 

methods have shown promising results in detecting planes and room layouts PlanNet [17], Plane Recover 

[18] and recently PlaneR-CNN [19]. 
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2.1. Plane R-CNN 

 

 
Figure 4.1: Plane R-CNN model framework. 

 

In PlanNet and PlaneRecover, the concept of plane segmentation task was introduced through Con-

volutional Neural Networks (CNNs); however, the segmentation was in general poor (1) limited to fixed 

number of planes about 10 plane per view and misses small surfaces. These two main drawbacks were 

addressed in Plane R-CNN in sophisticated architectures (figure 4.1) that consists of: 

a. Plane Detection Network 

In the first block, the network segments the scene into planar and non-planar regions in ge-

ometric sense using the original Mask R-CNN [20] instance segmentation network. The network 

jointly predicts the normal and depth of the planar regions where the non-planar regions are repre-

sented by their depth only.  

The normal is predicted by regressing the residuals of the closest anchor norm (7 fundamen-

tal norms) using a L1 cross entropy loss that replaces boding boxes anchors in the original imple-

mentation of Mask R-CNN.   

 
Figure 4.2: Seven (7) fundamental normal anchors. 

 

At the end of Feature Pyramid Network (FPN) [21]; a decoder is used to estimate the pixel 

wise depth information.  The plane offset 𝑑 is estimated as follows: 

 

 𝑑 =  
∑ 𝑚𝑖(𝑛

𝑇(𝑧𝑖 𝐾
−1𝑥𝑖))𝑖

∑ 𝑚𝑖𝑖

 (4.1) 

 

Where 𝐾 is the intrinsic parameters, 𝑥𝑖 is the pixel coordinates, 𝑧𝑖 is the predicted depth, 𝑛  

is the norm of the plane and 𝑚𝑖 indicator variable.  
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b. Mask Refinement Network 

The refinement aims to refine jointly all planes masks and maximize the number of detected 

planes. For this U-Net architecture [22] is proposed, to compare the plane masks against the ground 

truth planes with cross entropy loss whenever they overlap. As consequence; the depth map and 

plane normal are also adapted accordingly to the refined the mask.   

c. Warping Loss module 

The refined planes parameters are adapted between the nearby views using 3D point maps 

in minimizing the re-projection error L2 distance norm. This differentiable module enforces the 

geometrical consistency in depth estimation network and boosts the global plane detection accuracy. 

The plane R-CNN was trained in Scannet indoor dataset [23]with the generated plane ground 

truth. Plane R-CNN outperforms other plane detectors in terms of accuracy and recall in indoor and 

outdoor scenes. For this reasons; we adopt the Plane RCNN as segmentation network for planar 

region. 

 

2.2. Plane R-CNN on ETH 3D 

 

For demonstration purpose; we choose two high resolution indoor and outdoor scenes from 

ETH 3D dataset to evaluate the performance of Plane R-CNN, we chose multiple neighbouring 

views per scenes: 

 Indoor views (Pipes Scene): 

 

0634  0636 

  

 

  
 

 0639  0640 

 

  

 

  
 

 0643  0644 

 

  

 

  
 

 0646  0647 
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 First View  Planes Masks V1  Second View Planes Masks V2 

 
Figure 4.3(a): Plane Mask for neighbouring views in pipes scene 

left to right: first view, plane masks v1, neighbouring view, plane masks of neighbouring view. 

 

 outdoor views (electro scene): 

 

9257  9258 

  

 

  
 

 9266  9267 

 

  

 

  
 

 9261  9262 

 

  

 

  
 First View  Planes Masks V1  Second View Planes Masks V2 

 
Figure 4.3(b): Plane Mask for neighbouring views in Electro scene 

left to right: first view, plane masks v1, neighbouring view, plane masks of neighbouring view. 

 

In general; Plane RCNN successfully detects the most dominant planes and textureless surfaces in 

indoor and outdoor scenes mainly side walls, floor, doors and flat surface as the emergency and electricity 

boxes in view P-0636 and E-9266 respectively.  

The network detects the closest surfaces better than the farther ones and sometimes it fails to detect 

it as in P-0646 and P-0647; where the exit door at the end of the corridor was not detected. However the 

network totally fails to detect all windows appearing in E-9261 and E-9261 and sometimes wrong segmen-

tation appears between two neighbouring textureless surfaces as in P-0640 and P-0646; where a part of side 

wall is included with the floor mask (poor recall to borders). 

 

2.3. Low-Level feature segmentation 

We use superpixel segmentation algorithm to describe a group of pixels which are perceptually 

similar forming clusters. Superpixel are the basics shapes that forms smooth and large surfaces, commonly 
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superpixel are built around an energy function that assigns each pixel to superpixel centres on their simi-

larity appearance or other pixel wise information (depth, normal). Among the large list of developed super-

pixel algorithm, we adopt the SEED superpixel [24] for two main factors (1) number of generated super-

pixel are controllable, (2) compactness and better boundary recall which is important in plane segmentation, 

refer to superpixel evaluation [25] for more details. 

 P-0636  P-0647 

 

  

 

  

 

 E-9257  E-9261 

 

  

 

  

 Input image Superpixels   Input image Superpixels  

 Figure 4.4: SEED superpixels segmentation in Pipes & Electro scenes 

    

Although, the superpixel based on similarity appearance over segments the scene; however, it deals 

perfectly with different edges and shapes boundaries unlike the plane mask. Therefore combination between 

the low level feature segmentation (superpixel) and high level plane (primitive) segmentation will improve 

the plane detection part and parameter estimation. 

 

2.4. Merging Algorithm 

 

In superpixel merging; we combine superpixels shapes to construct planes and reduce the number 

of cluster; non planar region should remain unmerged. We propose two merging stages based on (1) simi-

larity appearance; as in [5]; and (2) on plane masks based on Plane R-CNN detections: 

a. Plane Primitives Merging 

On top of superpixel; we use Plane R-CNN detected masks to group superpixels that over-

laps with planes as first merging, we perform this merging operation carefully under the following 

conditions: 

 A superpixel is merged to a plane only if most of its pixels overlaps with plane, otherwise 

the superpixel remains without merging, therefore we define overlapping coefficient 𝛿 =
75%. 

 Shared superpixel between two planes masks or more is assigned to the most dominant 

plane, otherwise it will not be merger with any. 

b. Appearance Merging 

 

We use the fact that superpixel on textureless surfaces are smooth and have same colour dis-

tribution; as further merging process, we pick the most similar superpixel in neighbouring to initial 

plane-superpixel cluster then we merge them forming a new plane-superpixel.            



18 

 

With these two merging mechanisms; we avoid wrong plane segmentation in including non-

planar regions to a real plane that will lead to wrong depth estimation. We notice also that wrong 

plane detections disappear after the merging process. To provide depth and normal information to 

the missing pixel, we perform robust plane estimation in each cluster. 

0636 
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Figure 4.5(a): Plane-Superpixel merging in Pipes scene. 
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Figure 4.5(b): Plane-Superpixel merging in Electro scene. 

 

2.5. Plane Parameter Estimation 

 

In 3d dimension; a plane can be defined geometrically using the following plane equation: 

 𝑛𝑥  𝑥 + 𝑛𝑦𝑦 + 𝑛𝑧  𝑧 + 𝑑 = 0 (4.2) 

 

Where  𝑛 = (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧)
𝑇 is the plane normal vector and 𝑑 is the offset or the distance from the 

origin. As there are only three 3 degrees of freedom for a plane, the length of normal vector must be nor-

malized to unity ‖𝑛‖ = 1 as constraint. A set of 3D point clouds will be used to estimate the plane param-

eters, then the distance of any point 𝑝 = ( 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧  )   from the plane is given by 𝑑𝑖𝑠𝑡 = 𝑛𝑇 . 𝑝 − 𝑑 pro-

vided that 𝑛𝑇 . 𝑛 = 1. 

 We use RANSAC to search for best plane estimate in all superpixel clusters using local 3D point 

clouds. As described in section 2.3 – Chapter two, we select randomly three 3 points and we calculates the 

parameters of the corresponding plane; then we calculate the number of inliers according to the current 

plane estimate model confidence score”. The best plane fitting is obtained after at most 𝑁 iterations and 

with high confidence. 

Algorithm 1, details the pseudocode of the RANSAC for plane estimation. Three 3 points are ran-

domly chooses from 3D point cloud 3𝐷𝑃𝑜𝑖𝑛𝑡𝑠 to calculate the norm and offset 𝑜𝑑𝑒𝑙 ; we set the threshold 

distance to  𝑑𝑡 = 10 𝑐𝑚. We look for all superpixel point clouds that in line with plane 𝑀𝑜𝑑𝑒𝑙 with 

𝑎𝑏𝑠(𝑑𝑖𝑠𝑡) less than the defined threshold 𝑑𝑡. The 𝑏𝑒𝑠𝑡𝑆𝑢𝑝𝑝𝑜𝑟𝑡 aims to remove the 3D point outliers and 

maximize the set of inliers 𝑠, in addition; 𝜎 search for the best 3D points that minimizes the total standard 

deviation within the set 𝑠. The process is repeated 𝑁 Times and the best with highest confidence score.  

Table 1: Robust plane fitting using RANSAC.  

Algorithm 1: RANSAC for Plane estimation 

Inputs: {3D point cloud, plane-superpixel segmentation}  
Outputs: {Plane parameters estimates} 
1: 

𝑏𝑒𝑠𝑡𝑆𝑢𝑝𝑝𝑜𝑟𝑡 =  0              𝑏𝑒𝑠𝑡𝑆𝑡𝑑 =  ∞                𝑏𝑒𝑠𝑡𝑀𝑜𝑑𝑒𝑙 = {
𝑛 = (0,0,0)𝑇

𝑑 = 0             
𝑞 = 0             

} 

𝑁 = 𝑟𝑜𝑢𝑛𝑑 (𝑘)   𝑤𝑖𝑡ℎ                 

𝑝 = 0.99 (𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)

𝑠 = 3 (𝑛𝑢𝑚𝑃𝑜𝑖𝑛𝑡𝑠)       
𝑖𝑛𝑙𝑖𝑒𝑟𝑅𝑎𝑡𝑖𝑜 = 𝑛𝑢𝑚𝐼𝑛𝑙𝑖𝑒𝑟𝑠/𝑛𝑢𝑚𝑃𝑜𝑖𝑛𝑡𝑠

 

2: 𝒘𝒉𝒊𝒍𝒆   𝑖 ≤   𝑁 𝑑𝑜 

3:  𝑣𝑒𝑐𝑡3𝐷 = 𝑟𝑎𝑛𝑑 (3𝐷𝑃𝑜𝑖𝑛𝑡𝑠)  sample 3 point randomly 
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4:  𝑀𝑜𝑑𝑒𝑙 = 𝑝𝑡2𝑝𝑙𝑎𝑛𝑒(𝑣𝑒𝑐𝑡3𝐷) 

5:  𝑑𝑖𝑠𝑡 = 𝑑𝑖𝑠𝑡2𝑝𝑙𝑎𝑛𝑒(𝑀𝑜𝑑𝑒𝑙 , 3𝐷𝑃𝑜𝑖𝑛𝑟𝑠) 

6:  𝑠 =   𝑓𝑖𝑛𝑑 (𝑎𝑏𝑠(𝑑𝑖𝑠𝑡) < 𝑑𝑡) 

7:  𝜎 =   𝑠𝑡𝑑(𝑠) 

8:  𝒊𝒇  ( 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠)  > 𝑏𝑒𝑠𝑡𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑟  𝜎 < 𝑏𝑒𝑠𝑡𝑆𝑡𝑑  ) then 

9:   𝑏𝑒𝑠𝑡𝑆𝑢𝑝𝑝𝑜𝑟𝑡 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠)     𝑏𝑒𝑠𝑡𝑀𝑜𝑑𝑒𝑙 = 𝑝𝑙𝑎𝑛𝑒𝑃𝑎𝑟𝑎𝑚      𝑏𝑒𝑠𝑡𝑆𝑡𝑑 =  𝜎 

10:  𝒆𝒏𝒅 𝒊𝒇 

11:  𝑖 = 𝑖 + 1 

12: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

 

2.6. Completion 

 

In our method, depth completion is achieved using the fitted planes in previous step; isolated super-

pixels that have no 3D point clouds has not been merged or included in plane estimation. We distinguish 

three 3 pixel wise depth information in the input depth map provided by dense reconstruction stage: 

- Missing pixels: appearing with zero depth values; are either filtered in geometric consistency 

check or unmatched pixel in the correspondence. 

- Outliers: or spikes; appearing as high depth values managed to survive in the consistency check 

and unconsidered in plane fitting. 

- Valid pixels: are geometrically consistent between 𝑁 views and provide a good pixel depth esti-

mate used for plane fitting. 

 

In our depth Completion process; we change outliers’ depth values and we fill the missing pixels 

with their estimate, using equation (4.1), the pixel wise depth is calculated as:  

 𝑧𝑖 = 
𝑑

𝑛𝑇 . 𝑋
=

𝑑

𝑛𝑇 . (𝐾−1𝑥𝑖)
 (4.3) 

 

The incomplete pixels are set to high numerical values 𝑧𝑖 =  ∞; accordingly, we complete the nor-

mal map for the correspondingly pixels 𝑛𝑖 = (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧)
𝑇. We integrate mutli-view geometric consistency 

check as forward-backward reprojection error between a source and reference image; similar to [2], we give 

reprojection error 𝑒𝑠
𝑟 = ‖ 𝑥𝑟 − 𝐻𝑟

𝑠  𝐻𝑟  𝑥𝑟‖; where 𝐻𝑟
𝑠  is the projective backward transformation from 

source to reference view. 

The depth value in reference frame 𝑥𝑟 is wrapped to the source frame at   𝑥𝑟
𝑠 = 𝐻𝑟  𝑥𝑟  where  𝐻𝑟 =

𝐾𝑠 [𝑅 𝑇] 𝐾𝑟
−1 as describe in section 2.2.b chapter two. The estimated depths and normal are consistent if 

the reprojection error is small 𝑒𝑠
𝑟 ≤  1 𝑝𝑥. 
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Figure 4.6(a): Completed Depth and Norma maps in Pipes scene. 

Top-left: RGB Image, Top-middle: Input depth map, Top-right: input normal map  

Bottom-left: Completed  depth, Bottom -middle: Filtered depth , Bottom –right: Filtered normal 
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Figure 4.6(b): Completed Depth and Norma maps in Electro scene. 

Top-left: RGB Image, Top-middle: Input depth map, Top-right: input normal map 

Bottom-left: Completed  depth, Bottom -middle: Filtered depth , Bottom –right: Filtered normal 

 

In order to evaluate our work; we fuse the depth normal map of each scene as point clouds, the 3D 

model of pipes and electro scenes are show in figure 4.7. The generated 3D point clouds of each scene are 

evaluated against its ground truth provided in ETH 3D Training dataset. 
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 Figure 4.7(a): Pipes Fused 3D model (Top) Plane Depth Completion (Bottom) Colmap. 
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 Figure 4.7(b): Electro Fused 3D model (Top) Plane Depth Completion (Bottom) Colmap. 

      

 

 

 

 

 

 

 

 

 



26 

 

Chapter 5 
 

V. Evaluation    

 

 

We perform evaluation on the ETH 3D high resolution training dataset in terms of accuracy and 

completeness as described [26]. The dataset contains 13 indoor/outdoor scenes recorded using DSLR cam-

era and the ground truth geometry has been obtained using high-precision laser scanner. We generate the 

sparse depth maps using COLMAP [27] in machine of 32 core 2.4 GHz with 16 GPUs Nvidia Tesla K80 

of 11 GB memory.   

For better control, we use SEED to generate 200 superpixels in each view and we require 75% as 

minimum plane overlapping in the first stage of merging. For each cluster, we estimate the plane parameters 

with 30% inlier ratio and 0.99 confidence. We consider at least two 2 views that has to be geometrically 

consistent with 1 pixels in projection and reprojection error. 

In the 3d fusion stage, we require a maximum reprojection error of 2 pixels and two 2 points at least 

for good scene representation quality with maximum depth error of 0.1 and 25 maximum normal error. 

Table 5.1.a and 5.2.b shows the evaluation results of our Plane-Superpixel depth Completion process 

in Pipes and Electro scenes. For each scene; we compare the MVS reconstruction as point clouds against 

the laser scan ground truth; we evaluate Colmap and our Plane-Superpixel depth Completion in terms of 

accuracy and completeness in range of distances thresholds 𝑟 from 1 cm to 50 cm.  

We define the accuracy (a) as a fraction of all points within a distance radius 𝑟 of the ground truth 

point and completeness (c) as the amount of the ground truth points with the radius. The F1 score is a global 

reconstruction score defined as harmonic mean 𝐹1 = 2 × (𝑎. 𝑐)/(𝑎 + 𝑐). 

 

Table 5.1(a): Plane Depth Completion reconstruction evaluation in terms of completeness and accuracy 

against Colmap in Pipes scene.  

Pipes 

Tolerances (m) 0.01 0.02 0.05 0.1 0.2 0.5 

Completeness 
Colmap 0.252746 0.33798 0.465243 0.558864 0.650544 0.750019 

Depth Completion 0.409780 0.490407 0.577670 0.628898 0.679316 0.750330 

Accuracies 
Colmap 0.934714 0.969448 0.983854 0.988988 0.993955 0.99881 

Depth Completion 0.915554 0.958032 0.98090 0.987324 0.993399 0.999079 

F1-Scores 
Colmap 0.3979 0.501219 0.631747 0.714164 0.786394 0.856718 

Depth Completion 0.56616 0.648734 0.727124 0.768368 0.80687 0.85702 

  

Table 5.1(b): Plane Depth Completion reconstruction evaluation in terms of completeness and accuracy 

against Colmap in Electro scene. 

Electro 

Tolerances (m) 0.01 0.02 0.05 0.1 0.2 0.5 

Completeness 
Colmap 0.570057 0.695369 0.804491 0.872414 0.923713 0.968071 

Depth Completion 0.664289 0.791398 0.880407 0.923921 0.947172 0.971636 
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Accuracies 
Colmap 0.813764 0.910184 0.973879 0.988934 0.993558 0.996368 

Depth Completion 0.815456 0.906377 0.968492 0.985663 0.991788 0.995604 

F1-Scores 
Colmap 0.670451 0.788406 0.881118 0.927027 0.957363 0.982016 

Depth Completion 0.732151 0.844995 0.922351 0.953793 0.968967 0.983474 

 

We have achieved a better a better 3D reconstruction in terms of completion and accuracy in in-

door/outdoor high resolution images in comparison to Colmap, we provide also in the Table 5.2, evaluation 

for all 13 Scenes in terms of F1 Score only. 

In general; depth completion based on Plane-superpixel segmentation provides a high scene com-

pletion with a good accuracy; we notice that our algorithm provides better scene completion in indoor scene 

as in Pipes, Office and Kicker, and satisfactory performance in outdoor scenes for the following reasons: 

- Indoor Scenes; our depth completion algorithm based on Plane-Superpixel segmentation suc-

cessfully provides depth information for missing pixels in large textureless areas which are dom-

inant and numerous.  

 

- The number of views per scene also play a role in performance of both algorithm; for large 

number of views a slight difference in performance between colmap and our depth completion 

algorithm (redundancy) as in courtyard (38 views) and Delivery area (44 views). 

 

- The large presence of sky and windows lead to unsatisfactory depth completion due the fact that 

the sky is also detected as plane by the network, where the reflection in windows also prevent 

the network to extract its plane mask. The network has been trained on Scannet dataset where 

only few scenes includes large windows and sky. 

 

- Since our plane estimation is based on 3D point clouds, plane segments with no sufficient points; 

as the left side wall in Pipes 0646; are not included in the depth completion.          
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Table 5.2: 3D reconstruction evaluation in terms F1-score for all ETH 3D high resolution dataset 

comparing depth completion against colmap. 

 
Tolerances (m) 

0.01 0.02 0.05 0.1 0.2 0.5 

Courtyard 
Colmap 0.629295 0.819978 0.90647 0.942959 0.957633 0.97004 

Depth Completion 0.615622 0.820336 0.906509 0.940758 0.953561 0.968998 

Delivery_area 
Colmap 0.667562  0.802857 0.900584 0.939063 0.965004 0.986292 

Depth Completion 0.692918 0.831981 0.925545 0.953765 0.970637 0.985557 

Electro 
Colmap 0.670451 0.788406 0.881118 0.927027 0.957363 0.982016 

Depth Completion 0.732151 0.844995 0.922351 0.953793 0.968967 0.983474 

Facade 
Colmap 0.468573  0.661183 0.835533 0.887234 0.914967 0.940241 

Depth Completion 0.456521 0.645729 0.828742 0.884052 0.914696 0.934206 

Kicker 
Colmap 0.539274 0.636944 0.761775 0.859078 0.944242 0.990958 

Depth Completion 0.72988 0.816431 0.893462 0.93801 0.970412 0.992623 

Meadow 
Colmap 0.374174 0.530808 0.674868 0.754573 0.827516 0.904809 

Depth Completion 0.464044 0.589917 0.708272 0.76926 0.825841 0.894436 

Office 
Colmap 0.427731 0.528466 0.66375 0.761791 0.850255 0.951334 

Depth Completion 0.600556 0.689161 0.782626 0.84154 0.894904 0.960659 

Pipes 
Colmap 0.3979 0.501219 0.631747 0.714164 0.786394 0.856718 

Depth Completion 0.56616 0.648734 0.727124 0.768368 0.80687 0.85702 

Play_Ground 
Colmap 0.521271 0.682413 0.845518 0.91095 0.945754 0.973094 

Depth Completion 0.53022 0.692895 0.856412 0.921031 0.95105 0.974347 

Relief 
Colmap 0.704322 0.804553 0.880108 0.921156 0.953362 0.979029 

Depth Completion 0.723707 0.825141 0.897729 0.932395 0.957934 0.975867 

Relief_2 
Colmap 0.676665 0.788244 0.874211 0.91684 0.949031 0.974282 

Depth Completion 0.688115 0.803549 0.88559 0.921755 0.948532 0.970945 

Terrace 
Colmap 0.760262 0.861278 0.937537 0.970564 0.988105 0.996787 

Depth Completion 0.779455 0.876898 0.94359 0.973467 0.988118 0.996195 

Terrains 
Colmap 0.695597 0.787254 0.880995 0.935029 0.973722 0.994064 

Depth Completion 0.805346 0.886269 0.943516 0.968479 0.983312 0.993836 
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VI. Conclusion  

 

 

 

We have presented a plane segmentation and depth completion for high resolution images, our al-

gorithm; includes low level feature segmentation and plane primitives mask to segment planes present in 

the scene. We perform robust estimation to estimate the plane parameters using the 3D point cloud in each 

plane segment, then; we complete the missing pixels in the input depth maps with their estimates. 

 

We have shown a significant improvement in evaluating our depth completion reconstruction ap-

proach in terms of completeness on the ETH 3D dataset benchmark while keeping high level of accuracy. 

Further improvements can be done in different level in the pipeline: 

- Further training to Plane R-CNN network for indoor and outdoor scenes; will enhance the plane 

detection for specific planes as windows. 

 

- Multi-view Plane-Superpixel segmentation and refinement (merging) is needed to propagate 

planes between views (more planes per single view) to obtain same plane segmentation per K 

views having the same 3D point clouds, such scene global plane segmentation leads to a better 

plane estimation, and K views depth map consistency. 

 

- Better plane segmentation; allow us to create a new plane dataset for high resolution images; 

building a CNN model that jointly detects scene planes by grouping superpixels based on their 

similarity appearance and geometrical constraints; in an objective to overlap the planes with 

their ground truths, and complete the input sparse depth maps by minimizing the number of the 

invalid pixels. 
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