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Abstract Multi-View Stereo (MVS)-based 3D reconstruction is a major topic
in computer vision for which a vast number of methods have been proposed
over the last decades showing impressive visual results. Long-since, bench-
marks like Middlebury [45] numerically rank the individual methods con-
sidering accuracy and completeness as quality attributes. While the Middle-
bury benchmark provides low-resolution images only, the recently published
ETH3D [44] and Tanks and Temples [23] benchmarks allow for an evaluation of
high-resolution and large-scale MVS from natural camera configurations. This
benchmarking reveals that still only few methods can be used for the recon-
struction of large-scale models. We present an effective pipeline for large-scale
3D reconstruction which extends existing methods in several ways: (i) We in-
troduce an outlier filtering considering the MVS geometry and make use of
machine-learned confidences for filtering [30]. (ii) To avoid incomplete models
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from local matching methods we propose a plane completion method based
on growing superpixels allowing a generic generation of high-quality 3D mod-
els. We show further improvements by utilizing plane detections from a deep
neural network [33] in addition to superpixel segmentation masks to generate
improved plane-based segmentation masks. (iii) Finally, we use deep learning
for a subsequent filtering of outliers in segmented sky areas. We give exper-
imental evidence on benchmarks that our contributions improve the quality
of the 3D model and our method is state-of-the-art in high-quality 3D recon-
struction from high-resolution images or large image sets.

Keywords Multi-View Stereo · 3D Reconstruction · Plane Estimation

1 Introduction

Benchmarking 3D reconstruction from real-world high-resolution images has
been absent to the community since the unavailability of Strecha et al.’s [47]
online service. Even though ground truth models are available for a subset
of the datasets, their images basically show well-textured scenes from specific
and simple camera configurations. For example, the objects are captured from
a constant distance. Similar limited configurations are provided by the DTU
Robot Image [1] and Middlebury [45] datasets, both consisting of images cap-
tured in a laboratory environment with relatively low resolutions.
The importance of employing a large variety of scenes and viewpoints in differ-
ent kind of environments is demonstrated by the recently published benchmark
datasets ETH3D [44] and Tanks and Temples [23]. Both datasets comprise
ground truth models generated from high-precision laser scanners. For spe-
cific training data the ground truth is publicly available. The ETH3D [44]
dataset provides images that have been registered and aligned with the laser
scans while the Tanks and Temples dataset [23] provides the image data only
needing a preceding estimation of the camera calibration by means of Struc-
ture from Motion (SfM) [46,35,51,41,42]. Since data alignment is a non-trivial
task, we use the ETH3D training dataset for the evaluation of the proposed
contributions in our experiments. Finally, we show our evaluation results on
the ETH3D Test and Tanks and Temples Test and Training datasets from our
proposed 3D reconstruction pipeline.

1.1 Related Work

In this paper, we focus on methods allowing a high completeness of 3D models
while still preserving details. CMPMVS [21] reconstructs surfaces (meshes)
in a tetrahedral space [31] derived from noisy point clouds using visibility con-
straints. CMPMVS is especially strong in the reconstruction of surface parts
that have not been directly derived in the Multi-View Stereo (MVS) step. For
MVS an efficient plane-sweep approach is used [20]. The underlying optimiza-
tion scheme has already been shown to be suitable for large-scale 3D recon-
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struction [50,37]. Instead of tetrahedralization, we reconstruct point clouds
allowing a higher level of detail without a complex optimization. COLMAP
[42,43] is used widely for effective point cloud reconstruction from images
with unrestricted configurations. Impressive results were shown with diverse
datasets like Photo Community Collections [42], laboratory data [45] and high-
resolution imagery [43] One of COLMAPs major contributions is the depth
map generation based on PatchMatch (PM) [3,55] including statistics for cor-
respondence search in multiple images resulting in a higher efficiency [43].
Finally, it uses a geometric fusion of noisy depth maps into clean point clouds.
The resulting point cloud can be transformed into surface meshes, e.g., by
means of Poisson reconstruction [22]. Gipuma [14] also provides a GPU im-
plementation of PM stereo matching including a pixel-wise normal estimation.
For an independent parallelization a checkerboard propagation scheme is pro-
posed leading to a higher efficiency of the method. Depth maps are fused into
a single point cloud by averaging over consistent depth and normal estimates.
The Gipuma method is ranked lower in the ETH3D benchmark compared to
alternative PM methods. ACMH [52] demonstrates that the checkerboard
sampling allows high-quality reconstruction when using a multi-hypothesis
joint view selection. When further employing a multi-scale geometric consis-
tency guidance (ACMM [52]) state-of-the art quality is achieved. To this end,
the completeness is improved by multi-scale geometric consistency guidance for
propagating depth measurements from lower resolution levels. DeepC-MVS
[30] also combines checkerboard sampling with multi-scale processing for PM
[52] including plane-based propagation of the depth hypothesis [43]. For an
improved outlier filtering a deep-network is introduced capable of predicting
pixel-wise confidences which are subsequently used for outlier filtering and
depth map refinement [40]. LTVRE [27] uses Semi-Global Matching (SGM)
[16] to generate disparity maps and derives a pixel-wise quality estimate using
a Total Variation (TV) criterion [26]. The TV criterion has also been success-
fully applied to PM for stereo images [29]. One key contribution of LTVRE is
a 3D error estimation and probabilistic fusion and filtering [25] which which
improves standard local volumetric fusion while still allowing a high scalability
[24]. Semi-globally optimized depth maps provide a higher completeness but
are limited by their fronto-parallel assumptions. MVE [11] is also based on a
volumetric fusion of implicit functions from 3D point clouds including point-
wise quality values [38] [9] [10]. In contrast to linear one dimensional functions,
MVE considers a 3D error assigning values to voxels in a spatial neighborhood.
Depth maps are estimated with a region-growing approach [15] which is less
effective since it lacks completeness as it can be demonstrated with the ETH3D
benchmark. PMVS [13] also employs sparse features expanded by means of
a region-growing approach. The semi-dense point clouds are filtered for ob-
taining a higher accuracy. PMVS does show a similar relatively low quality
as other methods based on region growing MVS on the ETH3D benchmarks.
TAPA-MVS [39] recently demonstrated that the completeness of PM depth
maps can be significantly improved by applying depth completion with plane-
fitting on superpixel level as additional hypothesis.
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This paper describes an extended version of PCF-MVS [28]. Our method uses
PM depth maps as input for a plane-based completion on superpixels. In con-
trast to [28], we use the improved PM pipeline and outlier filtering proposed in
[30]. We extend TAPA-MVS by introducing hierarchical superpixel clustering
and adaption of the plane estimation to generic MVS where no scale of the
scene is available. To this end, we make use of LTVREs error propagation. In
addition, we apply the plane fitting as a post-processing to PM depth maps
and demonstrate a significant improvement for the completeness of 3D models
on the ETH3D benchmark while still preserving high resolution details.
As an extension to PCF-MVS [28] we additionally integrate planar segments
derived from a DNN as geometrical cues from a single RGB image. Recently,
deep learning-based methods have shown promising results in reconstructing
textureless surfaces from single images. PlaneNet [34] and SVPNet [54] intro-
duced a plane segmentation task with deep learning to model man-made 3D
scenes. These networks successfully learn to generate plane masks and plane
parameters from ground truth depth maps, however they fail to detect flat
surfaces with a small receptive field and are limited to a maximum number of
detections. PlaneNet [34], for instance, can detect up to 10 planes per view.
PlaneRCNN [33] addresses these two issues and proposes a novel architecture
that jointly detects the plane parameters and the corresponding instance seg-
mentation mask. Additionally the network refines the plane detections during
the training and enforces geometric consistency between the views for better
segmentation recall. PlaneRCNN outperforms PlaneNet and SVPNet in terms
of number of detections, accuracy and generalizability.

2 Review of Suitable 3D Reconstruction Methods

As said, our method is based on ideas from MVS, error propagation, plane de-
tection and depth completion. In this section we give a summary and analysis
of employed methods.

2.1 Multi-View Stereo

There are promising deep-learning-based stereo methods [18,53] for accurate
depth map generation. However, they are limited with large scenes because
they generate very large 3D cost volumes as input strongly limiting the appli-
cability for large disparity ranges. A direct comparison on the high-resolution
ETH3D benchmark is given by [39] demonstrating their shortcomings. We fo-
cus on methods which are feasible for high-resolution image processing.
Benchmarking shows better results for MVS estimation with PM and stereo
estimation with SGM than for region-growing methods. SGM performs well
on scalability, as only two images (stereo) have to be processed at a time.
The final (MVS) disparity map is derived by means of pixel-wise fusion from
multiple stereo disparity maps. In general, PM is feasible for processing high-
resolution images as the runtime complexity increases only linearly with the
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image resolution (in overall pixels N), while SGM has an polynomial complex-
ity (O(N1.5)) considering the additional disparity dimension. On the other
hand, SGM does not need a pixel-wise propagation of each pixel assigned to a
patch neighborhood for all iterations as it only needs a scalar representation
of pixel neighborhoods using Census matching costs [17]. Hence, PM needs ef-
ficient implementations, e.g., on a GPU where memory resources are limited.
However, its unrestricted patch-based nature results in a higher quality recon-
struction as it does not imply strong geometric priors like the fronto-parallel
assumption in SGM. Therefore, we selected PM for depth-map estimation as
we found that a standard GPU is sufficient to process the ETH3D datasets in
full resolution of 25MP.
We extend the COLMAP [43] and DeepC-MVS [30] PM processes by calculat-
ing the average baseline b for multi-view configurations which is used for the
subsequent completion and fusion. COLMAP [43] and DeepC-MVS [30] PM
employ a final consistency checking by projecting pixel-wise estimated depths
into source images. If the re-projection error and a NCC-based photometric
consistency is below a threshold the pixel passes the consistency checks and
is marked valid. For each pixel p in each source image i we use the finally
matched pairs to estimate an average baseline:

bpi =
1

|Jp
i |

∑
j∈Jp

i

bi,j , J
p
i ⊂ N , (1)

with baseline bi,j between images i and j and set J image pairs out of all source
images N which have been marked valid. The average baseline is important
for our filtering and quality propagation to model 3D uncertainties.

2.2 Error Propagation

In the subsequent filtering, completion and fusion steps, we use the uncertainty
of a 3D point as error metric [36]. We derive this uncertainty in the three space
dimension from 3D Point P = (Px, Py, Pz), focal length f , camera baseline b
and expected disparity error with standard deviation∆p for a pair of registered
images:
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Kuhn et al. [27] already successfully applied this concept for MVS and showed
that using ∆P = ∆Pz as scalar error is valid because it is the dominant error
when depth values are larger then two times the camera baseline. To extend
the propagation to MVS instead of single stereo only, they are estimating for
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the average baseline over all images. In this paper we make use of the pixel-wise
estimated baseline b = bpi (Eq.(1)) from the PM process (see Sec. 2.1).

2.3 Depth Completion

The recently published depth completion method TAPA-MVS [39] has demon-
strated that completion on superpixels improves the quality of 3D reconstruc-
tion significantly [44]. TAPA-MVS employs SEED superpixels [49] in two vary-
ing sizes on the input images. After the first PM iteration they filter out small
peaks in the depth images and fit planes in superpixels by applying RANSAC
on remaining depth measurements. In the second PM run, the completed maps
are taken into account as hypothesis for pixel-wise depth estimation. To handle
untextured areas, a texture confidence from the local variance of an image is
used [39]. We take this method as a reference and also make use of RANSAC-
based plane fitting on superpixels. In contrast to TAPA-MVS, we propose a
hierarchical clustering of extracted superpixels, integrate the MVS geometric
error (Sec. 2.1) in the RANSAC optimization and apply the depth completion
as a post-processing step for PM instead of adding an additional hypothesis.
This improves the PM runtime, allows better handling of large untextured
areas and the processing of generic MVS datasets. In addition, fine structured
details are preserved as we keep the original PM depth values when available.
We will demonstrate the qualitative improvement on the ETH3D benchmark.
The quantitative improvement is demonstrated by processing the Tanks and
Temples dataset, which do not provide an absolute scale, e.g., in meters like
the ETH3D datasets.
DeepC-MVS [30] completion strategy is based on confidence prediction used
for guiding a regularizer within a global optimization framework [40]. To this
end, a confidence prediction network is used [48] which is extended for learn-
ing MVS-derived depth maps. The confidences are used for filtering of outliers
employing probabilistic clustering and as an input for a joint depth and nor-
mal map refinement [40]. The latter makes use of the confidence as a factor
in the part of a cost function describing the regularization term. We instead
make use of the confidence for filtering depth maps before applying our plane
based depth completion.

2.4 Plane Detection

In perceiving 3D Scenes, a global knowledge of repetitive structures such as
planes and smooth surfaces can be of advantage in providing an accurate and
complete 3D model. Methods based on Manhattan World Stereo (MWS) are
used long-since, e.g., utilizing MRF-based optimization [12] or plane-fitting
[32]. The latter employs detected planes to create a set of aligned boxes for
approximating the geometry of the scene. Moreover, Satoshi et al. [19] intro-
duce scene structure awareness in extracting planar surfaces for detecting small
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Fig. 1 Piece-wise planar reconstruction results by PlaneRCNN on pipes dataset from
ETH3D high resolution. Top: Input images from ETH3D dataset pipes, bottom: Segmented
plane regions.

planar regions and fine structures. The scene is segmented based on geometric
representation and structural elements. Recently, deep-learning-based meth-
ods are used for a less biased reconstruction. PlaneRCNN proposes a novel
end-to-end architecture that jointly infers plane parameters and the corre-
sponding plane mask from a single image. PlaneRCNN’s architecture consists
of three components. (1) Detection Network that uses a variant of MaskR-
CNN to build instance masks over inferred surface normals. The plane offset
is subsequently calculated using the inferred normal and an additionally esti-
mated monocular depth map. (2) PlaneRCNN uses a U-network to refine all
detected masks together against the ground truth employing a cross entropy
loss. Similar to PlaneNet, a simple fitting algorithm was used to extract planes
and generate plane ground truth annotations from 3D Scans of the ScanNet
datatset [8]. (3) The network enforces the consistency during the training be-
tween the nearby views in minimizing the projection and re-projection distance
norm. In general, PlaneRCNN outperforms all learning-based plane segmen-
tation networks and traditional MWS-based methods in terms of plane recall
and segmentation quality. Although PlaneRCNN gives a better accuracy for
plane parameters compared to learning based techniques, the performance is
low compared in comparison to MWS-based methods which are more accurate
in fitting the plane parameters from depth maps.
In our semantic-aware 3D Reconstruction pipeline, we use the detected plane
masks only as an additional input to improve the completeness of the cor-
responding depth maps. Applying PlaneRCNN on images from the ETH3D
dataset Fig. 1 achieves a reasonable performance in terms of segmentation
recall where most dominant planar surfaces in the scene are detected. Ad-
ditionally, as shown in Fig. 1, the network achieves a partial segmentation
consistency between the views as seen for the left and right side wall seg-
mentations and a robustness against the illumination variations and light re-
flections. Unlike the SEED [49] segmentation, the network generates a weak
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plane segmentation as an over-segmentation or under-segmentation mask that
requires a refinement process before the depth completion process. To solve
this problem, we propose a plane assignment method based on plane semantic
information (high level features) and superpixels (low level features).

3 Algorithm

We propose a 3D reconstruction pipeline with three major steps: 1. Depth
maps generation and filtering, 2. Completion of depth maps and 3. Final fil-
tering of outliers. In this section, we describe the individual steps.

3.1 Depth Maps Generation and Filtering

For the reconstruction of areas which have been captured by only two cameras,
one cannot rely on a filtering with robust statistics as multiple measurements
would be needed. To decimate the number of outliers, e.g., TAPA-MVS filters
peaks in depth maps considering the depth difference of neighboring pixels.
This is not possible for general MVS configurations because a constant depth
range has to be defined. Alternatively, filtering in the disparity domain as
proposed by Hirschmüller [16] and used in SGM can be utilized: Small peaks
are clustered in the disparity map and filtered if they do not exceed a min-
imum cluster size. The disparity map is segmented by allowing neighboring
disparities to vary by only less than one pixel. At this point SGM operates on
disparity maps estimated from two images. Such clustering is suitable for SGM
with its fronto parallel assumption. However, such depth maps show problems
on strongly slanted surface parts. Our employed PM in contrast, allows their
reconstruction and neighboring pixels could be connected even though the dis-
parity difference is high. Hence, in [28] we do not cluster the disparity maps
directly but use its derivative. We transfer depth values d from the depth maps
into disparity space considering the pixel-wise average baseline bpi from Eq. (1)
and derive the first order deviation for pixel i as follows:

∇Dp
i = ∇f b

p
i

dpi
(3)

From the derivated disparity map ∇D small clusters of connected components
are filtered out. Because the derivative does not penalize depth values on par-
allel planes we additionally employ the 3D error term (Eq. 2) in the clustering,
which means that neighboring values should be in a tolerantly-set noise area
∆P . Our experience shows that the filtering is working well when employing
the average baseline, even though Eq. (3) considers standard stereo configu-
rations and we use MVS-derived depth maps in varying configurations.
In this paper, we also evaluate the use of the clustering in the normal map do-
main as recently proposed in [30]. Instead of depths or disparities, the normal
vectors are clustered which generally have a unit scale. If the normal vector
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of neighboring pixels is similar the same cluster is assigned to them. This is
rendered possible even on noisy normal maps when taking a confidence into
account [30]. To this end, inlier probabilities for the clusters are estimated by
means of the Binary Bayes fusion:

pI = 1− 1

1 + elI
, lI =

∑
i∈I

pi
1.0− pi

, (4)

where cluster probability pI is estimated by fusing pixel probabilities pi from
confidences. Note that for this clustering option we also make use of the 3D
error (Eq. 2) as described above. Fig. 2 shows a direct comparison of the
proposed filtering methods. Neighboring depth values on the wall have varying
differences in depth (≈ 0.5m in near and ≈ 5m in far areas). Clustering in the
disparity or normal vector space can handle such scale differences.

Fig. 2 From left to right: input PM depth map, filtered depth map based on disparity
clustering, filtered depth map based on normal clustering.

3.2 Depth Completion

The locally derived depth maps lack in completeness as PM disregards texture-
less areas. Inspired by recently published depth filling on superpixels TAPA-
MVS [39] we propose an important extension of the filling of depth maps.
TAPA-MVS extracts superpixels on two levels and considers the filled depths
as additional hypothesis in PM. We, in contrast, estimate the superpixels on
the finer resolution and cluster them subsequently. To this end, we set a min-
imum number of valid depth measurements per superpixel. If the number is
below a threshold the superpixel is merged with the most similar neighbor-
ing superpixel (see Fig. 5). As proposed by TAPA-MVS, the Bhattacharya
distance of RGB histograms is used as similarity metric. TAPA-MVS consid-
ers this metric for selecting measurements of neighboring superpixels for the
RANSAC fitting depending on a similarity norm. In their method only one
neighboring superpixel can be taken into account, hence, our method is more
adaptive for larger untextured areas.
Having a sufficient number of depth measurements, we run the plane fitting

employing a RANSAC optimization. More precisely we use RANSAC employ-
ing an M-estimator (MSAC). In TAPA-MVS the RANSAC considers inliers to
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Fig. 3 Filtered (top right) and unfiltered (top centre) PM depth maps. The bottom left
images shows the initial and the bottom centre the clustered superpixels. On the bottom
right the depth map is filledfrom the RANSAC-derived planes.

be in a fixed range of 10 cm. At this point, we make use of the pixel-wise 3D
error estimate. The inlier range is set relatively to the expected error defined
in Eq. (2) and the summed cost of the relative distance is minimized:

argminK

∑
k∈K

|| < Pk,P > ||
∆Pk

, (5)

with set K as selected inlier points which minimize the sum of relative dis-
tances considering the distance || < Pk,P > || from point P to plane P and
uncertainty ∆P (Eq. (2)) as normalization. If the distance from 3D point P
and plane P is above a threshold its influence is fixed as proposed by MSAC.
The normalization concerning the 3D uncertainty allows the processing of
generic data where no scale is know, e.g., on the Tanks and Temples datasets.
In addition, considering the 3D error is beneficial when having varying base-
line and distances to the scene (see Fig. 3). Having a plane estimate for each
superpixel, we fill the initial PM depth map with depth values by intersecting
the line of sight with the estimated 3D plane. Next to runtime optimization
the post-processing allows the preservation on fine-structured details from the
original depth maps. PM also extracts normal vectors, which are required
for our fusion method. Because our depth filtering method is implemented as
postprocessing, we fill the PM normal maps by the individual normals of the
superpixel-wise estimated plane.

3.3 Plane-based Depth Completion

As an extension to the depth filling based on superpixels by PCF-MVS [28]
(Sec. 3.2), we propose a semanticlly-aware depth completion method based on
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Fig. 4 Plane segmentation refinement on pipes dataset from ETH3D high resolution. from
Left to Right: (a) input RGB image, (b) segmented plane regions, (c) superpixels produced
by SEED, (d) semantic planarity labeling, (e) final plane segmentation after plane growing.

planarity detection and robust fitting aiming to complete the filtered depth
maps even further. Relying on low-level features (appearance) in assigning
fine superpixels to the same planarity surfaces is not sufficiently robust. More
precisely, the neighbouring similarity metric fails to reconstruct large surfaces
with wide variability in surface appearance. For that, we use an additional
planar semantic segmentation as high level features to extend the definition of
planar surfaces.
As a pre-processing step to our plane semantic-aware depth completion, we
propose a local boundary refinement strategy based on plane segments and
superpixels. For each image in the scene, we use PlaneRCNN [33] to extract
a set of planes P = (p1, ...., pm), where m denotes the number of extracted
plane masks per image. Further, we use SEED [49] to segment the image into
a set of n superpixels S = (s1, ...., sn), where n >> m (see Fig. 4 (b-c)). Our
algorithm consists of two main steps: 1) Semantic majority voting and 2) Ap-
pearance based plane growing.
Semantic majority voting: Due to the fact that the plane mask may exceed
the real plane boundaries and include partially other planar or non-planar re-
gions, we define a semantic cost C

pj
si for each superpixel si as an overlapping

ratio between pixels which lie in plane pj and the total pixel count |si|. The
semantic cost C is in the range of 0 ≤ Ci

j ≤ 1. We additionally define a
cost for non-planarity with C¬psi = 1−

∑
k∈P C

pk
si and perform a majority vot-

ing with the highest semantic cost to assign superpixel si to plane pj , where
argmaxj∈P Cj , or to the background as non-planar region.
This normalized semantic cost also represents the likelihood of an individual
superpixel belonging to a plane. We define then a threshold parameter τs to
assign superpixels to the most probable plane mask if the maximum semantic
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Fig. 5 Filtered (top right) and unfiltered (top centre) PM depth maps. The middle left
images shows the initial SEED and the middle centre the PCF clustered superpixels, the
middle right the completed depth using PCF. The bottom left images shows the initial plane
masks by PlaneRCNN and the bottom centre the refined plane segments. On the bottom
right the depth map is filled from the RANSAC-derived planes.

cost exceeds Cmax > τs. At this step, the successfully labeled superpixels are
subsequently merged constructing a new plane segmentation set P ∗. Superpix-
els which are shared between several planes with low scoring are not assigned
to any plane class at this point, even though they are part of a plane.
Appearance based plane growing: To solve the under-segmentation prob-
lem we use the appearance similarity growing mechanism using Bhattacharya
distance of RGB histograms [39] on the new plane segmentation set P ∗ to
merge the weakly supported superpixels with its most similar neighbouring
one, pushing the plane segments to grow to its boundaries. Non-assigned sim-
ilar superpixels in textureless areas are also merged forming larger planar
clusters extending the network detection sets P ∗+ with more planar clusters
and reducing the non assigned superpixels set S−.
Additionally to the refinement objective, semantic majority voting groups the
assigned superpixels in weakly supported textureless region into one plane (see
Fig 4 (d)) where the appearance growing extends the support of initial plane
segments with bordering superpixels which has a sufficient depth measurement
and a good recall to scene object boundaries (see Fig 4 (e)). The thresholding
parameter τs discourages the assignment of wrong detections and uncertain
planar candidates providing a good initial segmentation to grow safely.
Having a final segmentation for each view ΨIN = {P ∗+ ∪ S−}IN , we ensure a
sufficient support to each plane segment in estimating robustly the plane pa-



DeepPCF-MVS 13

rameters. With a sufficient number of depth measurements, we estimate the
plane parameters for each plane segment P ∈ Ψ using MSAC and we fill the
filtered depth and normal map as described in section 3.2
The network shows shortcomings when detecting sky area as planar surface in
outdoor scenes; and since the sky superpixels are weakly supported by non-
valid depths values; the growing process merges the sky segment with other
valid plane segments (e.g., road, building roof) seeking for a sufficiently enough
plane support. To solve this issue, we use a sky detector described in section
3.4 to remove the sky part from the processed plane keeping only the valid
part from the plane mask to assign superpixels afterwards.

3.4 Sky Filtering

Filtering of depth maps does not guarantee the removal of outliers on surfaces
with low degree of texturedness. In particular, sky areas for outdoor scenes
lead to strong artifacts that cannot be filtered geometrically. To solve for this
problem, we introduce a sky area detection by means of semantic segmentation
(see Fig. 6) based on DeepLabV3+ [4] which demonstrated a stable semantic
segmentation on images. In order to retrain the network for binary segmen-
tation, an enhanced dataset for sky is used comprising the following datasets:
Cityscapes [7],
ADE20K [56] and SkyFinder [6]. They all provide the class sky in a various of
outdoor scene which we use for a binary labeling. The datasets Cityscape and
ADE20 maintain a large variety of outdoor configurations while SkyFinder
strengthens the stability of the retrained network for different illuminance and

Fig. 6 The upper row shows an input image with the binary sky map where black marked
pixels represent detected sky areas. The mask is used to filter the depth map (bottom left).
The bottom right image shows final depth map.
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weather conditions. This helps to improve the ability of the network to dis-
tinguish sky and non-sky parts of each image. In order to avoid overfitting we
augmented the data by cropping, rotating and flipping images. Furthermore,
DeepLabV3+ is modified for binary segmentation by adjusting the loss func-
tion. We penalize wrong labeling of sky areas by a factor of 10 because sky
areas appear less frequently in the training dataset.

4 Experiments

We run experiments using the ETH3D and Tanks and Temples training data-
sets to evaluate the proposed steps of the pipeline and validated the full
pipeline on the test datasets. The 13 ETH3D training datasets contain from
14 to 76 registered images with 24MP resolution while the low-res training
datasets contain 660 to 1200 registered images with 0.36 MP resolution. We
processed the input PM depth maps on a 28-core 2.6GHz machine with four
Geforce GTX 1080 Ti GPUs and 11GB memory. The depth completion was
performed on a Core i7 8700k CPU and RTX 2080Ti GPU. The initial depth
maps are generated using the MVS pipeline and parameter settings from [30].
The PM depth maps are derived from half resolution images for the high-
resolution and in full resolution for the low-resolution images. The number of
source images to match the reference image against is set automatically depen-
dent on the GPU memory. Because PCF-MVS [28] employs PM depth maps
from COLMAP and because it it is a very popular method, representing the
state of the art in 3D reconstruction, we use it as a direct comparison for the
individual evaluations. In addition TAPA-MVS is compared as the baseline
for our depth completion method.

4.1 Depth Completion

In this experiment, we filter depths, by setting a minimum cluster size of con-
nected pixels which neighboring disparity gradients (see Eq. (3)) do not exceed
the threshold of 1.0 pixel. We empirically found that a minimum cluster size
of 100 pixels is a good trade off preserving completeness and accuracy.
A major contribution of our paper is the depth completion on growing su-
perpixels: We generate superpixels from the input images and combine neigh-
boring superpixels when having an insufficient number of depth values. The
minimum number of depth values per superpixel is set to 4000. Similar to
TAPA-MVS we use SEED superpixels [49] with a parameter of 200 super-
pixel per image for the initialization. Note that in contrast to TAPA-MVS we
make use of the superpixel-based completion as post-processing which avoids
computational complex hypothesis propagation within the MVS process and
allows higher quality in high resolution areas because the original PM depth
map is preserved. For each clustered superpixel we run the RANSAC-based
plane estimation allowing a maximum error of two times the standard devi-
ation (see Eq. (2)). We set the minimum inlier rate to 30%, the maximum



DeepPCF-MVS 15

number of trials to 10000 and the confidence to 99.99%.
To allow a direct comparison of the depth completion part, we employ our
completion method on COLMAP PM depth maps similar to TAPA-MVS in
this experiment. In addition, we use the depth map fusion method provided
by COLMAP which was also used by TAPA-MVS. Similar to TAPA-MVS, we
changed the standard fusion parameters to maximum re-projection error of
0.5 pixels for the high-res and 0.25 pixels for the low res images and the max-
imum difference of the normal angle of 20◦. Furthermore, we disabled the sky
filtering procedure at this point to allow a direct comparison of the depth com-
pletion part. Table 1 shows the results over all ETH3D training datasets and a
direct comparison to TAPA-MVS and COLMAP which are based on the same
PM method. The latter employs the PM depthmaps without completion. As
evaluation metric the standard F-Score is used combining completeness and
accuracy. We evaluated the metrics on two resolutions: 1 cm and 10 cm to
cover fine and coarse resolution scores. Our approach has the best F-Score
values for the fine and competitive values for the coarse resolution evaluation.
Note that for the final evaluation (Sec. 4.5) we do not use the COLMAP fu-
sion parameters suggested by TAPA-MVS. Table 2 shows the evaluation table
for the ETH3D video datasets containing large sets of low resolution images.
Again, our method has best scores concerning the F-score when evaluating
fine-structured details (1 cm distance).

Method AVG courty. delivery electro facade
Ours 68.16 93.34 67.70 96.56 74.03 97.70 75.73 95.82 52.31 94.55
TAPA 60.85 93.69 47.38 96.89 65.33 97.62 65.35 96.15 36.51 91.67
COLMAP 51.99 87.61 49.13 95.54 61.73 94.48 60.53 91.77 36.57 90.14

Method kicker meadow office pipes playgr.
Ours 69.00 88.33 57.96 89.38 61.09 86.18 73.73 94.33 55.57 93.70
TAPA 75.16 94.94 48.82 85.97 54.70 87.72 63.51 91.96 53.31 94.40
COLMAP 53.14 87.16 32.95 75.50 37.10 73.41 38.68 76.86 40.49 87.33

Method relief relief2 terrace terrain
Ours 71.09 91.51 67.76 91.54 78.92 97.63 81.16 96.22
TAPA 68.36 93.76 64.97 93.06 73.37 98.30 74.27 95.58
COLMAP 65.72 90.05 63.08 89.87 72.11 96.48 64.60 90.46

Table 1 F-Score [%] combining completeness and accuracy at a distance of 1cm and 10cm
for all ETH3D high-res training datasets and their average mean (AVG). The first row show
the result of our completion method with COLMAP fusion with same parameters as TAPA-
MVS. The second and third row show the results of TAPA-MVS and COLMAP which are
based on the same depthmaps. Best results are marked bold. Our method outperforms the
the baseline methods especially in fine-structured areas.

4.2 Evaluation of disparity and normal based clustering

In the following, we show evaluation results for the two clustering techniques
described in Section 3.1 for filtering our input depth maps. The input PM
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Method AVG delivery electro
Ours 42.66 82.11 32.50 79.81 40.83 80.72
TAPA 38.87 81.65 22.75 77.80 34.37 82.80
COLMAP 32.32 76.00 16.26 74.84 28.69 78.71

Method forest playground terrains
Ours 46.11 88.57 28.69 76.43 65.17 85.02
TAPA 45.53 87.23 24.02 73.54 67.70 86.89
COLMAP 39.99 85.35 17.68 59.56 58.96 81.54

Table 2 F-Score [%] combining completeness and accuracy at a distance of 1cm and 10cm
for all ETH3D low-res training datasets as in Table 1.

depth maps used in this evaluation are obtained from the pipeline used in [30].
For all further experiments performed with these depth maps on ETH3D high
resolution data, we set the fusion parameters as follows: The maximum normal
difference is set to 20◦, the maximum re-projection error to 1.0 and the min-
imum amount of measurements required to full-fill this condition are 2. For
ETH3D low resolution data the maximum normal difference is set to 10◦, the
re-projection error to 0.25 and the minimum amount of measurements to 4.
For Tanks and Temples we use the same settings as for ETH3D low resolution
except for a maximum normal difference of 20◦. For the Tanks and Temples
dataset we also enable the proposed 3D consistency check. This constraint
allows a fusion of 3D points considering the uncertainty in 3D (see Eq. (2)).
The original COLMAP fusion considers the inverse depth as a filtering crite-
ria. We found that the improvement does not have a significant influence on
the numerical benchmarking, but reduces the final point cloud size because a
larger set of redundant low quality points is fused resulting in a clean point
cloud. In Table 3, we provide an ablation study on the ETH3D high resolution
training dataset.

Method AVG courty. delivery electro facade
disp. clust. 73.72 96.93 69.25 98.89 78.67 98.39 77.61 98.32 54.98 96.09
norm. clust. 74.30 96.51 69.47 98.83 80.05 98.46 78.11 97.48 54.74 95.73
TAPA 60.85 93.69 47.38 96.89 65.33 97.62 65.35 96.15 36.51 91.67
COLMAP 51.99 87.61 49.13 95.54 61.73 94.48 60.53 91.77 36.57 90.14

Method kicker meadow office pipes playgr.
disp. clust. 79.66 96.68 62.80 94.00 67.44 91.40 79.08 97.21 63.58 96.67
norm. clust. 82.15 96.36 63.00 93.48 69.98 89.89 77.99 95.74 63.37 96.26
TAPA 75.16 94.94 48.82 85.97 54.70 87.72 63.51 91.96 53.31 94.40
COLMAP 53.14 87.16 32.95 75.50 37.10 73.41 38.68 76.86 40.49 87.33

Method relief relief2 terrace terrain
disp. clust. 78.11 97.83 77.13 97.75 82.65 98.50 87.39 98.30
norm. clust. 78.48 97.83 77.59 97.79 82.62 98.31 88.36 98.44
TAPA 68.36 93.76 64.97 93.06 73.37 98.30 74.27 95.58
COLMAP 65.72 90.05 63.08 89.87 72.11 96.48 64.60 90.46

Table 3 Ablation study for disparity based clustering and normal based clustering on
the ETH3D high resolution datasets. Results are shown for 1cm tolerance (left) and 10cm
tolerance (right) It can be seen that both the disparity and normal based clustering perform
similar, however for a tolerance of 1cm the normal based clustering yields better results on
average.



DeepPCF-MVS 17

It can be observed that, on average, the clustering based on normals performs
better on the fine grained tolerance level of 1cm, while the disparity based
clustering performs better on the high tolerance level of 10cm. However, the
quantitative results show no significant differences. In Figure 7, we show vi-
sualizations of the resulting point clouds for the different clustering methods.
It can be seen that the clustering based on normals improves visual quality of
the reconstruction as less outliers and noise are present in the point cloud.

Fig. 7 Point cloud results for disparity based clustering (left) and normal based clustering
(right) from the ETH3D training dataset. The first row shows the Electro dataset and
the second row shows the Meadow dataset. The normal based clustering approach (right)
significantly reduces the amount of outliers present.

4.3 Semantic Plane Completion

We also evaluate the performance impact of using the plane-based segmenta-
tion masks which are created from plane detections and superpixel segmenta-
tion masks. The ablation study for measuring this impact was conducted on
the high resolution and low resolution ETH3D training datasets. Table 4 and
Table 5 show the quantitative results on 1cm and 10cm tolerance. In Table 4,
one can see that the average result on 1cm is slightly improved when using the
segmentation masks based on plane detections. A more significant improve-
ment can be observed when comparing the scores of datasets Office, Pipes and
Kicker. These are datasets where a lot of planar structures and surfaces with
poor texturing are present and as such our plane based segmentation mask
augmentations have a high performance impact on these datasets. Figure 8
shows these improvements qualitatively on the reconstructed point clouds of
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Office and Kicker. It is observable that planar structures such as the floor,
ceiling and walls are more complete when using the plane-based segmentation
masks. Furthermore, an improvement in terms of the average F1 score can be
observed for the low resolution training datasets on both the 1cm and 10cm
tolerance level.

Method AVG courty. delivery electro facade
norm clust 74.30 96.51 69.47 98.83 80.05 98.46 78.11 97.48 54.74 95.73
norm clust + planes 74.73 96.47 68.02 97.41 79.09 98.28 77.92 97.55 53.86 95.06
TAPA 60.85 93.69 47.38 96.89 65.33 97.62 65.35 96.15 36.51 91.67
COLMAP 51.99 87.61 49.13 95.54 61.73 94.48 60.53 91.77 36.57 90.14

Method kicker meadow office pipes playgr.
norm clust 82.15 96.36 63.0 93.48 69.98 89.89 77.99 95.74 63.37 96.26
norm clust + planes 85.00 97.00 59.01 90.52 78.61 93.65 81.23 97.07 62.46 95.90
TAPA 75.16 94.94 48.82 85.97 54.70 87.72 63.51 91.96 53.31 94.40
COLMAP 53.14 87.16 32.95 75.50 37.10 73.41 38.68 76.86 40.49 87.33

Method relief relief2 terrace terrain
norm clust 78.48 97.83 77.59 97.79 82.62 98.31 88.36 98.44
norm clust + plane 78.51 97.76 77.36 97.42 81.87 97.92 88.61 98.56
TAPA 68.36 93.76 64.97 93.06 73.37 98.30 74.27 95.58
COLMAP 65.72 90.05 63.08 89.87 72.11 96.48 64.60 90.46

Table 4 Ablation study for the impact of plane-based segmentations on the ETH3D high
resolution training dataset. The quantitative results are provided with 1cm tolerance (left)
and 10cm tolerance (right). It can be seen that there are significant improvements in the F1
score for Office, Pipes and Kicker.

Method AVG delivery electro
norm. clust 45.41 84.75 30.82 83.38 43.99 85.42
norm. clust + planes 46.25 85.17 31.46 83.97 44.91 86.24
TAPA 38.87 81.65 22.75 77.80 34.37 82.80
COLMAP 32.32 76.00 16.26 74.84 28.69 78.71

Method forest playground terrains
norm. clust 52.34 87.69 30.78 78.60 69.14 88.64
norm. clust + planes 52.14 87.50 30.50 78.25 72.26 89.87
TAPA 45.53 87.23 24.02 73.54 67.70 86.89
COLMAP 39.99 85.35 17.68 59.56 58.96 81.54

Table 5 Ablation study for the impact of plane-based segmentations on the ETH3D low
resolution training dataset. The quantitative results are provided with 1cm tolerance (left)
and 10cm tolerance (right). The plane-based segmentations yield an increase in the average
F1 score both on 1cm and 10cm tolerance.

4.4 Depth Filtering

Sky areas do not have a strong influence on the ETH3D benchmarking as
they are mostly assigned to undefined areas. We found that for the Tanks and
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Fig. 8 Point cloud results comparing the use of standard superpixel-based segmentations
(left) with the use of plane-based segmentations (right). The two datasets are Office (top)
and Kicker (bottom) from the ETH3D high resolution training set. It can be seen that the
method utilizing the plane-based segmentations is able to complete more of the walls in
Office. Furthermore the table is more complete for the Kicker dataset.

Temples benchmark, in contrast, artifacts appear around surfaces which have
an influence on the final quality. This can be traced back to the large amount
of images showing the same scene leading to a higher rate of outliers. In ad-
dition, the evaluation is calculated from cropped parts of the scene without
undefined areas. As described in Sec. 3.4, we retrained the segmentation net-
work DeepLabV3+ for a binary labeling of sky areas. After testing with two
backbones and training steps the best performance was obtained by retraining
30000 steps with Xception [5] as backbone. The mean intersection over union
(mIOU) of our sky segmentation network scores 91% accuracy for the vali-
dation dataset. In general, the sky segmentation network has the robustness
against complex weather and illuminance conditions and generates stable and
precise segmentation result.
We generate binary maps for each image and filter sky-labeled depth values
in the final depth maps before the fusion. Even though, for some areas false
positive appear, the overall improvement is obvious. Fig. 9 visually shows the
resulting point cloud with and without sky-labeled filtering. For a numerical
evaluation we run the Tanks and Temples training datasets on both point
clouds and show the results in Table 6. The point clouds were generated using
the fusion settings from our clustering evaluation described in Section 4.2. For
a fair comparison we use the sky filtering in all datasets for the final evalua-
tion, even for the ETH3D and Tanks and Temples indoor data which slightly
lowers the accuracy.
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Method AVG Barn Caterp. Church
DeepPCF-MVS 64.98 72.45 62.02 62.23
DeepPCF-MVS \{SF} 64.92 71.94 61.73 62.22
COLMAP 53.03 47.26 54.71 52.37

Method Courth. Ignatius Meetingr. Truck
DeepPCF-MVS 49.98 89.67 44.15 74.35
DeepPCF-MVS \{SF} 50.06 89.67 44.26 74.59
COLMAP 38.37 78.06 34.45 64.98

Table 6 F-Score [%] combining completeness and accuracy at for all Tanks and Temples
training datasets. For the evaluation of Ours \{SF} the sky filtering was disabled.

Fig. 9 The images show the rendered 3D point cloud from the Barn dataset with and
without filtering of sky elements. The outliers are obviously decimated.

4.5 Final Evaluation

We run our pipeline also on the ETH3D and Tanks and Temples test datasets.
The 12 ETH3D test datasets contain from 7 to 110 registered images cap-
tured with a 24MP camera while the Tanks and Temples datasets contain
larger sequences containing from 251 to 1105 images of 12MP. For this evalu-
ation, we use the parameter settings described in Section 4.2 and additionally
enable sky filtering. Concerning the ETH3D high-res dataset (Table 7) our
method outperforms TAPA-MVS, PCF-MVS and ACMM for 2cm which is
the standard evaluation on the ETH3D homepage. Table 8 shows the results
for the ETH3D video datasets, where an improvement in terms of the aver-
age F1-score and completeness compared to the other methods is achieved as
well. These improvements are the results of a more dense initial prediction of
the MVS pipeline from [30] compared to COLMAP, as [30] use a hierarchi-
cal multi-scale approach [52] which yields better results for surfaces with poor
texturing. A more robust outlier filtering strategy based on normals which also
takes confidence metrics into account [30] helps to remove additional outliers
for the depth completion input depth maps and thus also yields more reliable
points during plane fitting. Furthermore, the plane-based segmentations help
to provide the MSAC based plane fitting with more point measurements on
large planar surfaces. The datasets in the Tanks and Temples benchmark do
not have many flat walls which reduces the influence of our plane prior. In
addition, the evaluation strongly depends on the SfM results as no ground
truth camera poses is given. To demonstrate the influence, we registered the
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datasets with COLMAP SfM and Altizure SfM [2] for PCF-MVS. In the case
of DeepPCF-MVS we use the SfM results from Altizure SfM [2] as they im-
proved the results for PCF-MVS. Note that for the experiment on the Tanks
and Temples test set, we also increase the allowed re-projection error to 1.0, as
this yields more dense results for difficult scenes. Furthermore the minimum
amount of measurements is set to 3. We also filter the completed depth maps
such that the re-projection error needs to be less or equal to 2.0 for at least
3 source images. Table 9 shows the quantitative results of DeepPCF-MVS on
the Tanks and Temples dataset. In terms of the average F-score metric on
the advanced and intermediate datasets, the results from DeepPCF-MVS are
slightly worse compared to PCF-MVS, however there are no significant dif-
ferences. For some datasets such as Family and Playground DeepPCF-MVS
outperforms PCF-MVS.

Method AVG(train) AVG(test) courty. delivery electro facade kicker meadow office
DeepPCF-MVS 85.30 83.08 88.10 89.72 88.77 90.48 85.46 73.08 90.97 73.77 84.81
PCF-MVS 79.42 75.73 80.38 79.29 84.88 88.17 86.08 69.85 75.23 68.43 68.03
ACMM 78.86 70.42 80.78 74.34 86.89 83.40 86.02 70.50 75.28 71.49 63.01
TAPA-MVS 77.69 71.45 79.15 74.49 80.68 84.52 81.36 63.14 84.77 64.82 68.72
LTVRE 61.82 49.41 76.25 66.27 72.83 77.19 64.37 58.97 33.56 28.00 52.59
COLMAP 67.66 55.13 73.01 62.98 80.49 77.98 75.29 62.95 63.62 49.96 47.32

Method pipes playgr. relief relief2 terrace terrain botani boulde. bridge
DeepPCF-MVS 85.95 77.43 88.22 87.73 87.85 94.34 92.24 69.03 89.57
PCF-MVS 78.38 71.76 81.26 80.65 88.56 91.18 87.71 68.99 83.65
ACMM 69.26 73.57 84.11 83.98 89.76 87.84 89.31 68.37 89.99
TAPA-MVS 75.91 71.86 81.62 79.55 87.80 85.24 89.59 62.99 88.16
LTVRE 42.21 63.93 74.52 76.28 77.15 82.13 88.60 64.38 79.24
COLMAP 50.72 58.57 76.87 75.50 84.94 75.33 87.13 65.63 88.30
Method door exhibi. lectur living. lounge observ. old co. statue. terrace.
DeepPCF-MVS 93.39 77.53 89.79 94.12 78.98 96.58 85.66 95.72 94.58
PCF-MVS 91.46 63.00 77.77 90.28 66.10 95.09 61.40 88.22 90.94
ACMM 91.60 70.28 77.25 89.66 53.37 93.53 74.24 82.85 88.85
TAPA-MVS 91.51 65.77 77.14 91.09 60.91 93.21 50.26 87.05 92.17
LTVRE 89.12 70.76 69.79 87.86 49.09 93.20 56.21 80.16 86.65
COLMAP 84.19 62.96 63.80 87.69 38.04 92.56 46.66 74.91 84.24

Table 7 F-Score [%] at a distance of 2cm which is the standard setting for the ETH3D high-
res benchmarking. For the AVG also the completeness is listed (right) The individual rows
show the results of the currently leading methods. Our extended method DeepPCF-MVS
achieves both a better F1 score and completeness metric compared to the other methods.

Method AVG(train) indoor outdoor AVG(test) indoor outdoor
DeepPCF-MVS 62.76 60.97 66.22 62.83 60.45 59.74 63.41 60.64 53.95 53.51 69.71 65.40
PCF-MVS 57.32 58.17 59.66 57.60 55.76 58.56 57.06 58.42 48.10 54.11 63.03 61.29
TAPA-MVS 55.13 55.77 58.21 61.18 53.07 52.17 58.67 58.89 52.34 51.21 62.89 64.01
ACMM 55.12 57.01 54.88 55.57 55.28 57.97 55.01 58.27 43.19 46.31 62.89 66.24
ACMH 51.50 53.77 53.46 49.88 50.20 56.37 47.97 52.68 38.24 35.79 54.45 63.93
LTVRE 53.52 41.68 58.21 44.05 51.36 40.11 53.52 43.60 45.46 37.31 58.89 47.80
COLMAP 49.91 40.86 51.76 40.09 48.68 41.37 52.32 45.89 42.45 37.03 58.89 51.79

Table 8 F-Score (left) and completeness (right) [%] at a distance of 2cm which is the
standard setting for ETH3D low-res (video) benchmarking. DeepPCF-MVS outperforms
the other methods on the test set as well as the training set.
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Method AVG(int.) AVG(ad.) Family Francis Horse Lighth. M60 Panther
Altiz.+DeepPCF-MVS 56.33 34.80 72.88 48.52 39.19 62.99 60.09 58.60
Altiz.+PCF-MVS [28] 55.88 35.69 70.99 49.60 40.34 63.44 57.79 58.91
COLM.+PCF-MVS [28] 53.39 34.59 67.32 43.28 34.45 61.17 50.59 61.20
ACMM 57.27 34.02 69.24 51.45 46.97 63.20 55.07 57.64
ACMH 54.82 33.73 69.99 49.45 45.12 59.04 52.64 52.37
COLMAP 42.14 27.24 50.41 22.25 25.63 56.43 44.83 46.97

Method Playgr. Train Auditor. Ballr. Courtr. Museum Palace Temple
Altiz.+DeepPCF-MVS 57.50 50.85 25.88 38.35 34.99 47.97 24.93 36.64
Altiz.+PCF-MVS [28] 56.59 49.40 28.33 38.64 35.95 48.36 26.17 36.69
COLM.+PCF-MVS [28] 55.93 53.14 26.87 31.53 44.70 47.39 24.05 32.97
ACMM 60.08 54.48 23.41 32.91 41.17 48.13 23.87 34.60
ACMH 58.34 51.61 21.69 32.56 40.62 47.27 24.04 36.17
COLMAP 48.53 42.04 16.02 25.23 34.70 41.51 18.05 27.94

Table 9 F-Score [%] at a employing varying distances as defined by the evaluation soft-
ware and the average mean (AVG) for the intermediate and advanced Tanks and Temples
datasets. For a comparison the currently best methods are shown. Our method generates
state-of-the-art results especially when using Altizure SfM.

Fig. 10 Qualitative results from the lounge dataset from the high resolution test data.
Top left: DeepPCF-MVS. Top right: PCF-MVS. Bottom left: TAPA-MVS. Bottom right:
ACMM.

5 Conclusion and Outlook

In this paper we have presented a pipeline for dense reconstruction of 3D point
clouds from large sets of high-resolution images. The extension of our previ-
ous depth completion method resulted in an improvement over the state of the
art in 3D reconstruction concerning completeness and the preservation of fine
details. Three major contributions are made: 1) depth completion on growing
superpixels, 2) plane-based segmentation 3) filtering of sky areas. The indi-
vidual steps are extended by considering MVS geometry. We have shown the
improvement visually and numerically on datasets from standard benchmarks
in large-scale reconstruction. A more robust MVS solution used for input depth
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Fig. 11 Qualitative results from the lecture room dataset from the high resolution test
data. Top left: DeepPCF-MVS. Top right: PCF-MVS. Bottom left: TAPA-MVS. Bottom
right: ACMM.

Fig. 12 Qualitative results from the old computer dataset from the high resolution test
data. Top left: DeepPCF-MVS. Top right: PCF-MVS. Bottom left: TAPA-MVS. Bottom
right: ACMM. It can be seen that DeepPCF-MVS improves the result compared to PCF-
MVS as there are fewer outliers present.

maps [30] has also allowed a more robust plane fitting reducing the number of
outlier planes which was deteriorating the accuracy on PCF-MVS. Figure 12
shows a direct comparison between PCF-MVS and DeepPCF-MVS on the old
computer dataset, where fewer wrong plane fittings corrupting the result are
visible for DeepPCF-MVS. Future work could include an extension which uses
geometric constraints to further refine the initial plane detections.
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